物联网是个交叉学科,涉及通信技术、传感技术、网络技术以及RFID技术、嵌入式系统技术等多项知识,但想在本科阶段深入学习这些知识的难度很大,而且部分物联网研究院从事核心技术工作的职位都要求硕士学历,“LPWAN实验室”计划从收集、整理、翻译实用的物联网有关的知识着手,帮助各高校物联网专业学生利用这个实验室学习平台找准专业方向、夯实基础,同时增强实践与应用能力。虽然现在面临大学生毕业就业难的情况,但实际各行各业却急需物联网领域相关专业的人才,从目前情况来看,环保、安防、智能交通、农业、医疗推广的可能性最大,这也是成为高校热门专业的一个重要原因。从工信部以及各级政府所颁布的规划来看,物联网在未来十年之内必然会迎来其发展的高峰期。而物联网技术人才也势必将会“迎娶”属于它的一个美好时代。

台湾清华大学黄能富-课时87-93:Zigbee协定简介
课程简介: 物联网的架构主要分为三层: 1. 感知层 (Sensors and Sensor networks), 2. 网络层 (3G/4G/5G 通讯网络), 3. 应用层 (各种应用的云端服务). 感知层主要探讨各式有线或是无线传感器 (如温度,湿度, 亮度, 陀螺仪, 三轴加速器, 心跳, 血压, 脉搏等等) 以及如何建构感测网络 (sensor networks) 将传感器收集到的数据可以传送出来. 传感器要做到低功耗 (电池续航力要高), 低成本, 小体积, 无线传输距离长等等, 是极具挑战的任务. 网络层主要探讨如何利用现有无线或是有线网络来有效的传送收集到的数据, 例如利用现有的 3G/4G 无线传输技术, 或是未来的 5G 无线传输技术等等. 应用层主要是探讨各种应用领域如何使用大数据分析的结果来回馈并控制传感器或是控制器的调节等等. 整体来说, 物联网是一个活的生态体系, sensors 收集数据, 透过手机或是其他设备网络回传到云端处理中心, 经过分析后再将控制讯息回传给控制器, 进行各种精细或是细腻的调控。 正在转至视频学习页面,请稍候… Read more.
台湾清华大学黄能富-课时105-110:Bluetooth – 简介
课程简介: 物联网的架构主要分为三层: 1. 感知层 (Sensors and Sensor networks), 2. 网络层 (3G/4G/5G 通讯网络), 3. 应用层 (各种应用的云端服务). 感知层主要探讨各式有线或是无线传感器 (如温度,湿度, 亮度, 陀螺仪, 三轴加速器, 心跳, 血压, 脉搏等等) 以及如何建构感测网络 (sensor networks) 将传感器收集到的数据可以传送出来. 传感器要做到低功耗 (电池续航力要高), 低成本, 小体积, 无线传输距离长等等, 是极具挑战的任务. 网络层主要探讨如何利用现有无线或是有线网络来有效的传送收集到的数据, 例如利用现有的 3G/4G 无线传输技术, 或是未来的 5G 无线传输技术等等. 应用层主要是探讨各种应用领域如何使用大数据分析的结果来回馈并控制传感器或是控制器的调节等等. 整体来说, 物联网是一个活的生态体系, sensors 收集数据, 透过手机或是其他设备网络回传到云端处理中心, 经过分析后再将控制讯息回传给控制器, 进行各种精细或是细腻的调控。 正在转至视频学习页面,请稍候… Read more.
LoRa快速全面入门
物联网应用中的无线技术有多种,可组成局域网或广域网。组成局域网的无线技术主要有2.4GHz的WiFi,蓝牙、Zigbee等,组成广域网的无线技术主要有2G/3G/4G等。这些无线技术,优缺点非常明显,可如下图总结。在低功耗广域网(Low Power Wide Area Network, LPWAN)产生之前,似乎远距离和低功耗两者之间只能二选一。当采用LPWAN技术之后,设计人员可做到两者都兼顾,最大程度地实现更长距离通信与更低功耗,同时还可节省额外的中继器成本。 图1 LPWAN技术对比和LoRa技术的定位 LoRa 是LPWAN通信技术中的一种,是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。这一方案改变了以往关于传输距离与功耗的折衷考虑方式,为用户提供一种简单的能实现远距离、长电池寿命、大容量的系统,进而扩展传感网络。目前,LoRa 主要在全球免费频段运行,包括433、868、915 MHz等。 LoRa技术具有远距离、低功耗(电池寿命长)、多节点、低成本的特性。 图2 LoRa技术特点 下图以美国情况为例,从灵敏度、链路预算、覆盖范围、传输速率、发送电流、待机电流、接收电流、2000mAh电池使用寿命、定位、抗干扰性、拓扑结构等参数上比较了Sigfox、LTE-M、ZigBee、WLAN、802.11ah和 LoRa的区别。 图3 LoRa与其他无线通信技术的比较 LoRa网络构成 LoRa网络主要由终端(可内置LoRa模块)、网关(或称基站)、Server和云四部分组成。应用数据可双向传输。 图4 LoRa网络体系结构 LoRa联盟 LoRa联盟(LoRa Alliance)是2015年3月Semtech牵头成立的一个开放的、非盈利的组织,发起成员还有法国Actility,中国AUGTEK和荷兰皇家电信kpn等企业。不到一年时间,联盟已经发展成员公司150余家,其中不乏IBM、思科、法国Orange等重量级产商。产业链(终端硬件产商、芯片产商、模块网关产商、软件厂商、系统集成商、网络运营商)中的每一环均有大量的企业,这种技术的开放性,竞争与合作的充分性都促使了LoRa的快速发展与生态繁盛。 图5 LoRa联盟 LoRa在中国 中国LoRa应用联盟(China Lora Application Alliance,简称CLAA)是在LoRa联盟支持下,由中兴通讯发起,各行业物联网应用创新主体广泛参与、合作共建的技术联盟,旨在共同建立中国LoRa应用合作生态圈,推动LoRa产业链在中国的应用和发展,建设多业务共享、低成本、广覆盖、可运营的LoRa物联网。 2016年12月中国LoRa物联网产业运营联盟正式揭牌成立[3]  ,意味着LoRa这一LPWAN(低功耗广域网)技术在国内将进入到大规模商用部署阶段,也意味着我国将成为全球最大规模的LoRa商用市场。鹏博士、Semtech、中科智城、中兴通讯、诺基亚上海贝尔、云帝斯等十多家企业成为首批联盟成员。 相比其他技术,LoRa成本低、功耗低,技术成熟,尤其是其产业链最为完善,国际上的商用案例也更加丰富。但LoRa在中国发展却缓慢,虽然LoRa模块目前已广泛应用于物联网产业链中的M2M行业,但由于缺乏基础网络和技术人才的支撑,产业生态无法形成闭环。在物联网基础较发达的中国台湾,例如台湾清华大学等已经开始为学生提供基于LoRa物联网技术的应用学习班[4]  。反观国内大学目前的物联网专业,还鲜有开设LoRa技术及应用的课程,虽然目前民间技术网站的学习热情正在逐步高涨的,例如国内的LoRa应用站已经开始整合翻译LoRa技术资料,甚至筹备针对物联网专业大学生的LoRa实验室课程等。 网络部署 目前LoRa网络已经在世界多地进行试点或部署。据LoRa Alliance 2017年公布的数据,已经有30多个国家开始建网,150多个城市开始进行试点。中国AUGTEK在京杭大运河完成284个基站的建设,覆盖1300Km流域;美国网络运营商Senet于2015年中在北美完成了50个基站的建设、覆盖15,000 平方英里(约38850平方千米),预计在第一阶段完成超过200个基站架设;美国最大的有线电视公司Comcast宣布采用LoRa技术,首先将在费城和旧金山地区完成网络部署,并提供计量相关(抄表等)、环境监测相关(温湿度、污染、噪声监测等)和追踪定位相关等服务。法国电信Orange宣布在2016年初在法国建网;荷兰皇家电信kpn宣布将在新西兰建网,在2016年前达到50%覆盖率;印度Tata宣布将在Mumbai和 Delhi建网;Telstra宣布将在墨尔本试点…… 图6 LoRa全球网络部署 LoRaWAN协议 LoRaWAN是 LoRa联盟推出的一个基于开源的MAC层协议的低功耗广域网(Low Power Wide Area Network, LPWAN)标准。这一技术可以为电池供电的无线设备提供局域、全国或全球的网络。LoRaWAN瞄准的是物联网中的一些核心需求,如安全双向通讯、移动通讯和静态位置识别等服务。该技术无需本地复杂配置,就可以让智能设备间实现无缝对接互操作,给物联网领域的用户、开发者和企业自由操作权限。 LoRaWAN网络架构是一个典型的星形拓扑结构,在这个网络架构中,LoRa网关是一个透明传输的中继,连接终端设备和后端中央服务器。网关与服务器间通过标准IP连接,终端设备采用单跳与一个或多个网关通信。所有的节点与网关间均是双向通信,同时也支持云端升级等操作以减少云端通讯时间。 终端与网关之间的通信是在不同频率和数据传输速率基础上完成的,数据速率的选择需要在传输距离和消息时延之间权衡。由于采用了扩频技术,不同传输速率的通信不会互相干扰,且还会创建一组“虚拟化”的频段来增加网关容量。LoRaWAN的数据传输速率范围为0.3 […] Read more.
物联网低功耗广域网络(LPWAN)技术全面详解
  物联网希望通过通信技术将人与物,物与物进行连接。在智能家居、工业数据采集等区域网通信场景一般采用短距离通信技术,但对于广范围、远距离的连接则需要远距离通信技术。 LPWAN技术正式为满足物联网需求应运而生的远距离无线通信技术。 提到远距离无线通信,你可能会有疑问不是有移动蜂窝通信技术吗?的确,目前全球电信运营商已经构建了覆盖全球的移动蜂窝网络,然而2G、3G、4G等蜂窝网络虽然覆盖距离广,但基于移动蜂窝通信技术的物联网设备有功耗大、成本高等劣势。当初设计移动蜂窝通信技术主要是用于人与人的通信。根据权威的分析报告,当前全球真正承载在移动蜂窝网络上的物与物的连接仅占连接总数的6%。如此低的比重,主要原因在于当前移动蜂窝网络的承载能力不足以支撑物与物的连接。 因此,为满足越来越多远距离物联网设备的连接需求,LPWAN(low-power Wide-Area Network,低功耗广域网)应运而生。 LPWAN 专为低带宽、低功耗、远距离、大量连接的物联网应用而设计。 LPWAN可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱下,3GPP支持的2/3/4G蜂窝通信技术,比如EC-GSM、LTE Cat-m、NB-IoT等。 LoRa LoRa并不是一个陌生的技术,它目前应用最为广泛的LPWAN网络技术之一,这一协议源于SemTech公司。 LoRa无线技术的主要特点: 长距离:1 ~ 20 km 节点数:万级,甚至百万级 电池寿命:3~10年 数据速率0.3~50kbps LoRa作为一种无线技术,基于Sub-GHz的频段使其更易以较低功耗远距离通信,可以使用电池供电或者其他能量收集的方式供电。较低的数据速率也延长了电池寿命和增加了网络的容量。 LoRa信号对建筑的穿透力也很强。 LoRa的这些技术特点更适合于低成本大规模的物联网部署。 在城市里,一般无线距离范围在1~2公里,郊区或空旷地区,无线距离会更远些。网络部署拓扑布局可以根据具体应用和和场景设计部署方案。 LoRa适合于通信频次低,数据量不大应用。一个网关可以连接多少个节点或终端设备,按照Semtech官方的解释:一个SX1301有8个通道,使用LoRaWAN协议每天可以接受约150万包数据。如果你的应用每小时发送一个包,那么一个SX1301网关可以处理大约62500个终端设备。 LoRa应用 从目前的LoRa应用情况来看,主要有数据透传和LoRaWAN协议应用。目前还是用LoRa作为数据透传的多,由于网关技术和开发的门槛比较高,使用LoRaWAN协议组网的应用还是比较少。 从LoRa网络应用方面看,有大网和小网之分。小网是指用户自设节点、网关和伺服器,自成一个系统网络;大网就是大范围基础性的网络部署,就像中国移动的通信网络一样。从LoRa行业从业者来看,有不少电信运营商也参与其中。随着LoRa设备和网络的增多,相互之间的频谱干扰是存在的,这就对通信频谱的分配和管理提出了要求,需要一个统一协调管理的机制,一个大网的管理。 LoRa应用需要考虑的几个问题: 距离或范围 供电或功耗 节点数 应用场景 成本 相对于其他无线技术(如Sigfox、NB-IOT等),LoRa产业链较为成熟、商业化应用较早。此前,Microchip公司宣布推出支持LoRa的通信模组,法国Bouygues电信运营商宣布将建设一张新的LoRa网络。 Semtech也与一些半导体公司(如ST,Microchip等)合作提供晶片级解决方案,有利于客户获得LoRa产品并采用LoRa无线技术并实现物联网应用。 另外,LoRa联盟已于今年年初成立,是LPWAN领域第一个产业联盟,旨在通过构建生态系统的方式推动LoRa的普及。 SigFox SigFox也是商用化速度较快的一个LPWAN网络技术,它采用超窄带技术,使得网络设备消耗50微瓦的功率为双向单向通信或100微瓦。相比较而言,行动电话通信则需要约5000微瓦。这就意味着,接入Sigfox网络的设备每条消息最大的长度大约为12字节,并且每天每个设备所能发送的消息不能超过140条。再说说覆盖范围,该公司希望他们的网络可以覆盖至1000公里并且每个基站能够处理一百万个对象。 这一协议由SigFox公司拥有,其创始人是法国企业家Ludovic Le Moan,主要打造低攻耗、低成本的无线物联网专用网络。 Sigfox今年建网动作 2016年2月,SigFox开始在捷克建网,该项目称为SimpleCell。经过一个半月的部署,其网络覆盖的城市和直辖市已经超过3300个,超过了原计划要覆盖6245个地点的一半。在与T-Mobile合作下,如今已经建成了60多个的SimpleCell基站,并计划在今年5月份完成对所有地区的部署。 2016年4月,SigFox携手Thinxtra在澳大利亚和纽西兰部署物联网网络,从而为成千上万待联网的传感器提供全球性、效益高、节能的通信解决方案。通过本次合作SigFox也将部署全球网络的触角伸到了到亚太地区,为该公司在亚太地区部署自己的网络树立了一块里程碑,标志着该公司2016年在30多个国家推出服务跨出了重要的一步。 Sigfox与模块制造商、设备制造商、晶片制造商、物联网平台提供商等产业链上的众多企业都建立了合作关系,如: 与芯科实验室的合作,将该实验室的EZRadioPRO无线收发器和UNB技术相结合; 与Atmel在远程物联网连接领域也开展了合作,通过了SIGFOXReadyTM认证的ATA8520器件,是首款通过该认证的片上系统(SoC)解决方案; 携手TI共同打造高成本效益、远程、低功耗物联网连接,让TI的CC1120 Sub-1GHz RF收发器在搭配UNB技术后提供最远范围的连通性及强大的抗干扰性; 同基础设施提供商Arqiva合作启用了第一个站点。 3GPP 面对各种兴起的物联网技术,3GPP主要有三种标准:LTE-M、EC-GSM和NB-IoT,分别基于LTE演进、GSM演进和Clean […] Read more.
区块链在物联网中的应用
今天的演讲主要包括三个部分:第一部分是物联网的行业痛点和区块链带来的优势,第二部分是区块链+物联网的产业现状和应用场景,第三部分是区块链+物联网的挑战和可新标准的需求。 物联网在长期发展演进过程中,遇到了以下5个行业痛点:设备安全、个人隐私、架构僵化、通信兼容和多主体协同5大痛点。 在设备安全方面,Mirai创造的僵尸物联网(Botnets of Things)被麻省理工科技评论评为2017年的十大突破性技术,据统计,Mirai僵尸网络已累计感染超过200万台摄像机等IoT设备,由其发起的DDoS攻击,让美国域名解析服务提供商Dyn瘫痪,Twitter、Paypal等多个人气网站当时无法访问。后续,又有奴役物联网设备、让其比特币挖矿的僵尸网络,还有规模更大、更为活跃的http81僵尸网络等。 在个人隐私方面,主要是中心化的管理架构无法自证清白,个人隐私数据被泄露的相关时间时有发生。就最近而言,人民网报道的,成都266个摄像头被网络直播就是一个案例。 在架构僵化方面,目前的物联网数据流都汇总到单一的中心控制系统,随着低功耗广域技术(LPWA)的持续演进,可以预见的是,未来物联网设备将呈几何级数增长,中心化服务成本难以负担。据IBM预测,2020年万物互联的设备将超过250亿个。 在通信兼容方面,全球物联网平台缺少统一的语言,这很容易造成多个物联网设备彼此之间通信受到阻碍,并产生多个竞争性的标准和平台。 在多主体协同方面,目前,很多物联网都是运营商、企业内部的自组织网络。涉及到跨多个运营商、多个对等主体之间的协作时,建立信用的成本很高。 区块链凭借主体对等、公开透明、安全通信、难以篡改和多方共识等特性,对物联网将产生重要的影响:多中心、弱中心化的特质将降低中心化架构的高额运维成本,信息加密、安全通信的特质将有助于保护隐私,身份权限管理和多方共识有助于识别非法节点,及时阻止恶意节点的接入和作恶,依托链式的结构有助于构建可证可溯的电子证据存证,分布式架构和主体对等的特点有助于打破物联网现存的多个信息孤岛桎梏,促进信息的横向流动和多方协作。 其次,我们介绍一下,区块链+物联网的产业现状和相关的应用场景。 产业现状一:物联网龙头纷纷开始布局区块链。根据Forrester Wave:物联网软件平台(2016年第4季度)的报告显示, IBM、PTC、GE和微软已成为占据物联网平台市场的主导企业。SAP、AWS、Cisco、LogMeln、Exosite、Ayla Networks和Zebra Technologies名列前11名。对于排名靠前的物联网平台龙头企业,除了美国参数技术公司(PTC)没有实质披露区块链相关项目以外(该公司很多区块链相关的文章),IBM、微软、亚马逊和SAP都在各自的云平台上提供区块链服务(Blockchain-as-a-Service),为未来海量的物联网设备接入提供弹性资源池,做了超前布局。通用电气GE和思科更多地是关注设备的标识和存证问题。 探讨区块链+物联网的进展,要跟垂直的行业结合才有针对性,我们以能源物联网为例,传统公司和区块链初创公司正双向发力,不断促进区块链在行业里的广泛普及和加速融合。 从传统电力公司的角度看,主要是通过与初创公司合作、成立子公司、甚至买下初创公司等方式,投资不同的试点项目,打造分布式能源系统和点对点的能源交易平台。这里包括瑞典国营电力公司VattenFall(瀑布电力)投资了荷兰阿姆斯特丹的初创公司(PowerPeers),构建让消费者自由选择电力渠道的能源共享平台,也有德国的莱茵公司(RWE)和初创公司Slock.it合作,推出的BlockCharge电动车充电项目。莱茵公司RWE成立子公司Innogy SE,推出了连接电动汽车车主、公共和私有充电站的一个区块链交易平台Share&Charge。 从初创公司看,初创公司主要从分布式能源系统、新型交易模式、认证和交易市场等不同角度切入区块链领域,开始初步涉及相关的物联网硬件制造,例如Slock.it公司推出的Smart Plug充电器适配装置,不断丰富区块链+的产业生态。 产业现状三是,垂直行业的生态格局已初步具有雏形。根据咨询公司Indigo的报告,还是以电力行业的区块链+物联网应用举例,从终端支付(加密数字货币)、能源交易市场、技术支撑+行业组织、智能家居点对点交易、打造智慧城市等方面已形成良好生态格局。对于我们国家而言,万向要在浙江打造基于区块链的、聚合能源、电动车、物联网、金融科技的聚能城,量子链也即将推出物联网的区块链项目等。 产业现状四是,区块链+物联网的国际标准先行探索。2017年3月,中国联通联合众多公司和研究机构在ITU-T SG20成立了全球首个物联网区块链(BOT,Blockchain of Things)标准项目,定义了去中心化的可信物联网服务平台框架。我院在ITU-T的SG 16工作组也完成了区块链的相关立项。 现在我们来介绍一下区块链+物联网的应用场景。由于区块链技术并未成熟定型,很多区块链和物联网结合的案例都是在PoC(概念验证)阶段,因此,今天的一些分享希望能给大家提供更多创新的灵感。 在第一个应用场景中,传统的供应链运输需要经过多个主体,例如发货人、承运人、货代、船代、堆场、船公司、陆运(集卡)公司,还有做舱单抵押融资的银行等业务角色。这些主体之间的信息化系统很多是彼此独立,互不相通的。一方面,存在数据做伪造假的问题,另一方面,因为数据的不互通,出现状况的时候,应急处置没法及时响应。在这个应用场景中,在供应链上的各个主体部署区块链节点,通过实时(例如船舶靠岸时)和离线(例如船舶运行在远海)等方式,将传感器收集的数据写入区块链,成为无法篡改的电子证据,可以提升各方主体造假抵赖的成本,更进一步地厘清各方的责任边界,同时还能通过区块链链式的结构,追本溯源,及时了解物流的最新进展,根据实时搜集的数据,采取必要的反应措施(例如,冷链运输中,超过0℃的货舱会被立即检查故障的来源),增强多方协作的可能。 共享经济可以认为是平台经济的一种衍生。一方面是,平台具有依赖性和兴趣导向性,摩拜和OFO做单车共享,但并没有做摩托车的共享。另一方面,平台也会收取相应的手续费,例如滴滴打车司机要将打车费用的20%上交,作为平台提成。初创公司Slock.it和OpenBazaar等主要是希望构建一个普适的共享平台,依托去中介化的区块链技术,让供需双方点对点地进行交易,加速各类闲置商品的直接共享,并节省第三方的平台费用。 在这个案例中,首先依托区块链网关,构建整个区块链网络。资产拥有者基于智能合约,通过设置租金、押金和相关规则,完成各类锁与资产的绑定。最终用户通过APP,支付给资产所有者相应的租金和押金,获得打开锁的控制权限(密钥),进而获取资产的使用权。在使用结束后,归还物品并拿回押金。这里有一个优势是,精准计费,可以按照智能合约上的计费标准,实时精准地付费,而不是像目前共享单车的粗犷式收费(按半小时、一小时收费)。虽然节省了平台手续费(20%),但是,也引发了很多思考,例如没上保险,出了事故如何解决;客户租车开了2­00公里,直接锁车结账走人了,谁将车开回来等,在实际应用中,应该会遇到很多问题。 在应用场景三中,主要是传统输电的线路损耗率达到5%,住户建立的微电网中盈余能源无法存储,也不能共享给有能源需求的其他住户。纽约初创LO3 Energy和ConsenSys合作,由LO3 Energy负责能源相关的控制,ConsenSys提供区块链底层技术,在纽约布鲁克林区实现了一个点对点交易、自动化执行、无第三方中介的能源交易平台,实现了10个住户之间的能源交易和共享。主要实现方式是,在每家住户门口安装智能电表,智能电表安装区块链软件,构成一个区块链网络。用户通过手机APP在自家智能电表区块链节点上发布相应智能合约,基于合约规则,通过西门子提供的电网设备控制相应的链路连接,实现能源交易和能源供给。 对于我国来说,也有一家点对点能源交易的初创企业,Energo。主要是通过将各家住户的可再生能源存储到分布式储能设备中,通过代币的形式评估能源的占有量和消耗量,基于智能合约设置能源交易规则和微电网切换主电网的策略,实现无中介的点对点能源交易平台。 在第四个应用场景中,主要面临的是多家充电公司支付协议复杂、支付方式不统一、充电桩相对稀缺、充电费用计量不精准等行业痛点,由德国莱茵公司和Slock.it合作,推出的基于区块链的电动汽车点对点充电项目。通过在各个充电桩里安装树莓派等简易型Linux系统装置,基于区块链将多家充电桩的所属公司和拥有充电桩的个人进行串联,使用适配各家接口的Smart Plug对电动汽车进行充电。使用流程为:(以Innogy的软件举例)首先,在智能手机上安装Share&Charge APP。在APP上注册你的电动汽车,并对数字钱包进行充值。需要充电时,从APP中找到附近可用的充电站,按照智能合约中的价格付款给充电站主人。APP将与充电桩中的区块链节点进行通信,后者执行电动车充电的指令。 第五个应用场景主要是针对未来无人机和机器人的快速发展,机器与机器之间的通信必须要从两个方面去考量:一方面,每个无人机都内置了硬件密钥。私钥衍生的身份ID增强了身份鉴权,基于数字签名的通信确保安全交互,阻止伪造信息的扩散和非法设备的接入。另一方面,基于区块链的共识机制,未来区块链与人工智能的结合点——群体智能,充满了想象空间,MIT实验室已经在这个交叉领域展开了深入研究。 接着,我们介绍一下区块链+物联网的应用挑战和对可信标准的需求。 区块链+物联网会遇到以下四个方面的挑战: 在资源消耗方面,IoT设备普遍存在计算能力低、联网能力弱、电池续航短等问题。比特币的工作量证明机制(PoW)对资源消耗太大,显然不然适用于部署在物联网节点中,可能部署在物联网网关等服务器里。其次,以太坊等区块链2.0技术也是PoW+PoS,正逐步切换到PoS。分布式架构需要共识机制来确保数据的最终一致性,然而,相对中心化架构来说,对资源的消耗是不容忽视的。 在数据膨胀方面,区块链是一个只能附加、不能删除的一种数据存储技术。随着区块链的不断增长,IoT设备是否有足够存储空间?例如,比特币运行至今,需要100G物理存储空间。 在性能瓶颈方面,传统比特币的交易是7笔/秒,再加上共识确认,需要约1个小时才写入区块链,这种时延引起的反馈时延、报警时延,在时延敏感的工业互联网上不可行。 在分区容忍方面,工业物联网强调节点“一直在线”,但是,普通的物联网节点失效、频繁加入退出网络是司空见惯的事情,容易产生消耗大量网络带宽的网络震荡,甚至出现“网络割裂”的现象。 从改进方面,可以从两个方面去衡量。 从区块链的角度来看, (1)对于资源消耗,可以不使用基于挖矿的、对资源消耗大的共识机制,使用投票的共识机制(例如PBFT等),减少资源消耗的通知,还能有效提升交易速度,降低交易时延。当然,在节点的扩展性方面,会有一定损耗,这个需要一个面向业务应用的权衡。 (2)对于数据膨胀,可以使用简单支付交易方式(SPV),通过默克尔树对交易记录进行压缩。在系统架构上,支持重型节点和轻型节点。重型节点存储区块链的全量数据,轻型节点只存储默克尔树根节点的256哈希值,只做校验工作。 (3)对于性能瓶颈,已经有很多面向物联网的区块链软件平台做了改进。例如,IOTA就提出不使用链式结构,采用有向非循环图(DAG)的数据结构,一方面提升了交易性能,另一方面,也具有抗量子攻击的特性。Lisk采用采用主链-侧链等跨链技术,进行划区划片管理,也在性能方面取得了不少突破。 (4)对于分区容忍,针对可能存在的网络割裂,可以选择支持链上链下交易,尤其是离线的交易,并在系统设计时支持多个CPS集群。 从物联网的角度来看, (1)对于资源消耗,随着eMTC、NB-IoT、LoRA等低功耗广域网(LPWA)技术的发展,传输质量、传输距离、功耗、蓄电量的问题将得以逐步解决。 (2)对于数据膨胀,根据摩尔定律和超摩尔定律,存储成本下降,物联网存储能力持续上升。 (3)对于性能瓶颈,随着MEMS传感器、SiP封装工艺等新技术、新工艺、新架构的不断成熟、成本降低,小体积、低功率的传感节点有望广泛应用。 […] Read more.
Semtech推出全新工具来改善开发人员使用LoRaWAN协议的体验
高性能模拟和混合信号半导体及先进算法领先供应商Semtech Corporation(Nasdaq:SMTC)今日宣布:推出集成了Semtech的LoRa®器件和无线射频技术(LoRa技术)的微微型(picocell)网关模拟器,其中包括Linux实用程序和Microsoft®Windows支持软件,并提供一个免费的、非商用的LoRaWANTM网络服务器演示平台。全新的工具将帮助低功耗广域网(LPWAN)应用开发人员快速地将其基于LoRa技术的物联网(IoT)产品创意形成样品并进行演示。 基于LoRa的Picocell网关USB模拟器 Semtech基于LoRa的picocell网关模拟器可以很容易地通过一个USB端口连接到一个基于Linux或Windows的处理器上,它们是LoRaWAN网关开发人员最常用的软件系统。Windows GUI在不需要额外开发板的情况下可简化网络连接。该工具的目标是加速将物联网技术部署在下一代智能应用中的过程。在初始原型阶段之外,多家LoRa联盟(LoRaAllianceTM)会员可提供兼容的商用、可生产级的网络服务器及picocell网关产品。带有Linux支持软件的设备目前已可供货,带有Windows支持软件的设备将于2018年初供货。 LoRaWAN网络服务器演示平台 随着更多的垂直市场去寻求物联网解决方案,这款免费的、非商用的LoRaWAN网络服务器给那些探求创新性应用场景的公司带来了一个机遇,并且拥有了一个安全的地方去评估其基于LoRa的应用。用户将有能力去测试主要功能,包括加载网关、查看传感器的数据登录和网络活动,及将数据传送给应用服务器进行可视化检视,并处理与LoRaWAN 1.0.2规范的兼容性。Semtech现已开通免费的演示网络服务器,并已经有开发人员在使用。各个地理区域的访问网址为: 北美:https://na.iot.semtech.cloud 欧洲:https://eu.iot.semtech.cloud 中国:https://cn.iot.semtech.cloud 亚太区:https://apac.iot.semtech.cloud “随着Semtech LoRa技术的市场采用率快速提高,提供免费或低成本的全新开发工具对我们的客户尤为重要,因为它降低了最初参与和评估的门槛,”Semtech无线和传感产品事业部总监Vivek Mohan说道。“Semtech对LoRaWAN开放协议和LoRa技术的贡献,将确保LPWAN传感器应用的成长及Semtech生态系统合作伙伴的成功。” 本文引用地址:http://www.eepw.com.cn/article/201710/370791.htm Read more.
IoT应用/装置数量飞速成长 认识LPWAN发展刻不容缓
物联网(IoT)发展需要长距离的通讯,进而催生出低功耗广域网络技术(LPWAN)的问世。 事实上,LPWAN一词在2013年之前还不存在,但为了达成生活全面智能化的愿景,不论是产/官/学界,对于物联网的发展都抱持着高度的期待。根据预测,10年后的社会,将会有超过25亿个设备串连在一起,足见落实LPWAN技术的应用刻不容缓。其中,被高度探讨的是作为非授权频谱代表的LoRa,以及授权频谱代表的窄频物联网(NB-IoT)。 LoRa:低连网复杂性、低耗能为特点 LoRa技术是基于1GHz以下的资料传输,由Semtech公司所开发。基于线性Chirp Spread Spectrum(CSS)扩频调制,在相同频率下,不同扩频序列的终端设备也不会互相干扰。 再者,LoRaWAN则是专为依赖电池供电的无线装置所设计的规范,通讯实体主要包括三个部份(如图1所示):终端设备(End Device)、闸道器(Gateway)和伺服器(Network Service)。 图1 LoRa网络架构 LoRaWAN的网络架构属于星状拓扑,所有终端设备透过LoRa传输连接到闸道器,闸道器则透过实体网络连线到伺服器进行讯息整合。此架构能减少网络复杂性以及能量的损耗,有效的延长电池寿命。 另一方面,依据应用场景的不同,终端设备可以不同的工作模式运作,以满足不同应用的需求,一共分为3种不同传输方式:Class A、Class B、Class C。数据延迟与电能消耗两者之间成为决定传输方式的关键因素。 Class A:双向通信 此一方式能够省下最多的电能,但相对来说,数据下载的延迟也最为明显。由于装置的传输功能平常是处于关闭的状态,当装置上传数据时,会短暂执行接收数据二次,紧接着又会再次关闭传输,借此节省电力。这样一来,节电机制会导致装置无法即时传送数据,进而造成相对较长的数据延迟。 Class B:具有预设接收槽的双向通信 此一方式需负担较多的电量,由于能够在设定的时间定期开启下载功能、接收数据,以降低数据传输的延迟。 以Class B来说,终端设备会在预设的时间中开放多余的接收视窗;为能达到这一目的,终端设备会同步从闸道器中接收一个Beacon,并通过此Beacon将基站与模组的时间进行同步。透过这种方式,能使伺服器掌握到终端设备正在接收资料。为了让数据保持同步的状态,因此会消耗较多的电量。 Class C:具有最大接收槽的双向通信 此一方式消耗最多的电量,在上传数据以外的时间,持续开启下载功能,以大幅降低延迟。 NB-IoT:采授权频谱提升传输效能/品质 NB-IoT技术始于2015年9月的3GPP会议制定工作项目,其第13版在2016年的年中制定完成。由于是布建在授权频谱,相对于其他LPWAN技术,在大量布建时可能会产生的连线碰撞问题,NB-IoT对此可有明显的改善。 目前来看,NB-IoT一共有三种操作模式:其一为载波独立于原先LTE的Standalone Mode;其二为在原先LTE载波间的Guard Band中,塞入NB-IoT的Guard-Band Mode;其三则为在运营商所使用的LTE载波中,切割出给NB-IoT操作的In-Band Mode。 其中,Standalone Mode最容易实作出,也是被很多NB-IoT基地台开发商首先建构出的版本。然而,对于现有运营商而言,为了在现有购买的频谱中提供NB-IoT服务,则倾向采用在原先LTE载波中切割NB-IoT操作频段的模式。 有鉴于此,对于要满足运营商需求的NB-IoT基地台开发商来说,必须设法解决NB-IoT频段,以及现有LTE频段间的干扰问题,才有办法进一步实现In-Band Mode的操作模式。 现阶段,3GPP的物联网系统一共有三种,一种是eMTC,第二种是NB-IoT,第三种是EC-GSM-IoT。三种规格比较表格如图2所示。 图2 eMTC、NB-IOT和EC-GSM-IOT的比较 对比NB-IoT系统,eMTC和EC-GSM-IoT只能应用在In-Band的架构。再者,相较于eMTC,NB-IoT具有更低的成本、更高的涵盖范围,并可提供更长的待机时间(10年每小时5瓦的功率消耗),每个NB-IoT蜂巢可支援到5万个对应物件。 NB-IoT有自己的物理层通道和同步讯号,支援单一的HARQ流程、简易的RLC AM模组及一组DRB。NB-IoT和eMTC都可支援在控制层传送小封包资料,核心网的MME、S-GW和P-GW整合成C-SGN,支援non-IP资料的传输,支援在连线时无建立PDN Connectivity。 除此之外,NB-IoT可支援到三种不同的涵盖范围,即便NB-IoT物件随机存取失败,倘若连线到的基地台可支援其他涵盖范围时,则可更改到不同的涵盖范围,进行随机存取。 第14版NB-IoT规格于2017年年中制订完成,可支援OTDOA以及UTDOA的定位功能。此规格能提供多方传送模式(SC-PTM),允许系统同时对多个设定物件传送相同资料,并提供低功率消耗和透过上下行两组HARQ减低传送延迟问题。 另外,新版规格亦可允许NB-IoT物件透过非定锚的载波连接上基地台,或借此呼叫物件以建立连线。相对第13版强制NB-IoT物件必须在同一个蜂巢下连线,新规格则提供NB-IoT物件可移动性和服务连续性等功能。 尽管设计上较原先3GPP的eMTC物联网系统简单,NB-IoT就其他LPWAN技术而言,由于需要支援蜂巢网络系统,外加芯片设计较复杂,其建置成本自是高于一般LoRa、Sigfox等,却也相对有办法提供较佳的系统表现,以及较高的传输速率。不仅如此,因运用原先蜂巢网络的加密设计,NB-IoT较其他LPWAN具备更佳的传送安全性。 此外,NB-IoT物件也能运用在智慧电表、停车场感应服务、智慧城市等自动感应器应用上。 现阶段,全球已布建eMTC和NB-IoT系统的运营商如图3所示。 图3全球eMTC和NB-IoT布建的情况 Cat-M1为支援eMTC规格的物件,至于Cat-NB1则为支援NB-IoT规格的物件。eMTC系统可提供较宽频宽,因此Cat-M1支援移动性的功能;相对地,第13版的Cat-NB1只支援再选蜂巢网络功能。除此之外,Cat-M1也支援语音服务。 另一方面,NB-IoT系统在第15版、即5G架构下,预计支援TDD模组的Wake-Up Receiver,可望提供更有效的功率消耗操作模式。 […] Read more.
基于LoRa的农业节水灌溉智能控制系统设计
第三届陕西省研究生创新成果展暨创新成果洽谈会展示系统。开发单位:西安邮电大学 Read more.
LoRaWAN优点
导读: 目前,相对于NB-IoT,LoRa是当前最成熟、稳定的窄带物联网通讯技术,其自由组网的私有网络远优于运营商持续不断收费的NB网络,且LoRa一次组网终身不需缴费。但是应用LoRa进行物联网通讯开发难度大、周期长、进入门槛高。 1 长距离 得益于扩频调制和前向纠错码的增益,LoRa取得大约2倍蜂窝技术(手机)的通信距离。长距离的“优秀基因”,使LoRaWAN可以使用star(星型)网络拓扑,相比mesh(网格)具备以下优势。 2 大容量 物联网的节点特别多,一个LoRaWAN网络能轻松连接上千,甚至上万节点的容量,得益于SX1301基带芯片的特长。 多通道 如下图所示,一片SX1301芯片,包括IF0~IF7,共8通道的LoRa调制解调电路。无线电通道,相当于马路的车道;通道越多,承载能力就倍增。 Semtech官方还有一种FPGA+SX1301的电路方案,典型的设计是8片SX1301集成到一个Gateway中,这样,就具备8×8=64通道。 相信,对于中国人口和建筑物如果稠密的环境,这种8片SX1301网关会大有用武之地。 扩频正交 因为LoRa是扩频调制技术,不同扩频因子的无线电信号是正交的,这是一个很重要的特性。如下图所示,同一个信道中,扩频因子(Spread Factor)从SF7~SF12(对应速率DR7~DR12)的6个无线电信号,彼此不相冲突。 这样一来,一个SX1301可以构建6×8=48个“虚拟信道”,容量得到更进一步提升。 3  ADR技术 有了前面“扩频正交”的基础,再来理解ADR(Adaptive DataRate,速率自适应)就很简单了。 如下图所示,依赖End Nodes和Gateway的距离:越近,End Nodes将采用高速率;越远,End Nodes将采用低速率。 ADR技术能带来如下好处: 速率和容量 离Gateway近的End Nodes因为采用高速率,可以大大缩短无线电的空中时间,从而给其他End Nodes通信留下宝贵的带宽,即,扩展了网络容量。 更低的能耗 很明显,End Nodes的速率越高,将会更多地休眠,电池寿命也就更长。 轻松扩容 当一个LoRaWAN网络需要增加容量时,通过增加Gateway即可,因为部署更多的Gateway,它附近的End Nodes将会提速,整个网络带宽得到显著提升。 4 安全 无线电天生容易被窃听,安全变得很重要,LoRaWAN是第一个提出双重加密的物联网。 应用层:LoRaWAN Server和End Nodes的应用数据,由AppSKey进行128ASE加密和解密,即使网络操作员也无法窃听应用数据。 网络层:LoRaWAN Server和End Nodes的通信帧,由NwkSKey进行128ASE加密和解密,它主要用于信息完整性校验和防止“伪节点”攻击。 5 低功耗 在mesh网络(如ZigBee)和蜂窝网络(如手机每1.5秒与网络同步),都有唤醒同步的机制,即间歇性侦听,是否有数据帧到来;这将消耗额外的电能。 LoRaWAN的End Nodes Class A(应用最广)是异步通信,即,仅当它需要发送数据时,才发起通信。异步通信,比同步通信,省去了唤醒侦听的电能。 6 一网络多网关 在LoRaWAN网络中,一个End Node的发送数据帧可以被多个Gateway接收,再转发给LoRaWAN […] Read more.
IoT应用/装置数量飞速成长认识LPWAN发展刻不容缓
物联网(IoT)发展需要长距离的通讯,进而催生出低功耗广域网络技术(LPWAN)的问世。 事实上,LPWAN一词在2013年之前还不存在,但为了达成生活全面智能化的愿景,不论是产/官/学界,对于物联网的发展都抱持着高度的期待。根据预测,10年后的社会,将会有超过25亿个设备串连在一起,足见落实LPWAN技术的应用刻不容缓。其中,被高度探讨的是作为非授权频谱代表的LoRa,以及授权频谱代表的窄频物联网(NB-IoT)。 LoRa:低连网复杂性、低耗能为特点 LoRa技术是基于1GHz以下的资料传输,由Semtech公司所开发。基于线性Chirp Spread Spectrum(CSS)扩频调制,在相同频率下,不同扩频序列的终端设备也不会互相干扰。 再者,LoRaWAN则是专为依赖电池供电的无线装置所设计的规范,通讯实体主要包括三个部份(如图1所示):终端设备(End Device)、闸道器(Gateway)和伺服器(Network Service)。 图1 LoRa网络架构 LoRaWAN的网络架构属于星状拓扑,所有终端设备透过LoRa传输连接到闸道器,闸道器则透过实体网络连线到伺服器进行讯息整合。此架构能减少网络复杂性以及能量的损耗,有效的延长电池寿命。 另一方面,依据应用场景的不同,终端设备可以不同的工作模式运作,以满足不同应用的需求,一共分为3种不同传输方式:Class A、Class B、Class C。数据延迟与电能消耗两者之间成为决定传输方式的关键因素。 Class A:双向通信 此一方式能够省下最多的电能,但相对来说,数据下载的延迟也最为明显。由于装置的传输功能平常是处于关闭的状态,当装置上传数据时,会短暂执行接收数据二次,紧接着又会再次关闭传输,借此节省电力。这样一来,节电机制会导致装置无法即时传送数据,进而造成相对较长的数据延迟。 Class B:具有预设接收槽的双向通信 此一方式需负担较多的电量,由于能够在设定的时间定期开启下载功能、接收数据,以降低数据传输的延迟。 以Class B来说,终端设备会在预设的时间中开放多余的接收视窗;为能达到这一目的,终端设备会同步从闸道器中接收一个Beacon,并通过此Beacon将基站与模组的时间进行同步。透过这种方式,能使伺服器掌握到终端设备正在接收资料。为了让数据保持同步的状态,因此会消耗较多的电量。 Class C:具有最大接收槽的双向通信 此一方式消耗最多的电量,在上传数据以外的时间,持续开启下载功能,以大幅降低延迟。 NB-IoT:采授权频谱提升传输效能/品质 NB-IoT技术始于2015年9月的3GPP会议制定工作项目,其第13版在2016年的年中制定完成。由于是布建在授权频谱,相对于其他LPWAN技术,在大量布建时可能会产生的连线碰撞问题,NB-IoT对此可有明显的改善。 目前来看,NB-IoT一共有三种操作模式:其一为载波独立于原先LTE的Standalone Mode;其二为在原先LTE载波间的Guard Band中,塞入NB-IoT的Guard-Band Mode;其三则为在运营商所使用的LTE载波中,切割出给NB-IoT操作的In-Band Mode。 其中,Standalone Mode最容易实作出,也是被很多NB-IoT基地台开发商首先建构出的版本。然而,对于现有运营商而言,为了在现有购买的频谱中提供NB-IoT服务,则倾向采用在原先LTE载波中切割NB-IoT操作频段的模式。 有鉴于此,对于要满足运营商需求的NB-IoT基地台开发商来说,必须设法解决NB-IoT频段,以及现有LTE频段间的干扰问题,才有办法进一步实现In-Band Mode的操作模式。 现阶段,3GPP的物联网系统一共有三种,一种是eMTC,第二种是NB-IoT,第三种是EC-GSM-IoT。三种规格比较表格如图2所示。 图2 eMTC、NB-IOT和EC-GSM-IOT的比较 资料来源:3GPP 对比NB-IoT系统,eMTC和EC-GSM-IoT只能应用在In-Band的架构。再者,相较于eMTC,NB-IoT具有更低的成本、更高的涵盖范围,并可提供更长的待机时间(10年每小时5瓦的功率消耗),每个NB-IoT蜂巢可支援到5万个对应物件。 NB-IoT有自己的物理层通道和同步讯号,支援单一的HARQ流程、简易的RLC AM模组及一组DRB。NB-IoT和eMTC都可支援在控制层传送小封包资料,核心网的MME、S-GW和P-GW整合成C-SGN,支援non-IP资料的传输,支援在连线时无建立PDN Connectivity。 除此之外,NB-IoT可支援到三种不同的涵盖范围,即便NB-IoT物件随机存取失败,倘若连线到的基地台可支援其他涵盖范围时,则可更改到不同的涵盖范围,进行随机存取。 第14版NB-IoT规格于2017年年中制订完成,可支援OTDOA以及UTDOA的定位功能。此规格能提供多方传送模式(SC-PTM),允许系统同时对多个设定物件传送相同资料,并提供低功率消耗和透过上下行两组HARQ减低传送延迟问题。 另外,新版规格亦可允许NB-IoT物件透过非定锚的载波连接上基地台,或借此呼叫物件以建立连线。相对第13版强制NB-IoT物件必须在同一个蜂巢下连线,新规格则提供NB-IoT物件可移动性和服务连续性等功能。 尽管设计上较原先3GPP的eMTC物联网系统简单,NB-IoT就其他LPWAN技术而言,由于需要支援蜂巢网络系统,外加芯片设计较复杂,其建置成本自是高于一般LoRa、Sigfox等,却也相对有办法提供较佳的系统表现,以及较高的传输速率。不仅如此,因运用原先蜂巢网络的加密设计,NB-IoT较其他LPWAN具备更佳的传送安全性。 此外,NB-IoT物件也能运用在智慧电表、停车场感应服务、智慧城市等自动感应器应用上。 现阶段,全球已布建eMTC和NB-IoT系统的运营商如图3所示。 图3全球eMTC和NB-IoT布建的情况 资料来源:Qualcomm Cat-M1为支援eMTC规格的物件,至于Cat-NB1则为支援NB-IoT规格的物件。eMTC系统可提供较宽频宽,因此Cat-M1支援移动性的功能;相对地,第13版的Cat-NB1只支援再选蜂巢网络功能。除此之外,Cat-M1也支援语音服务。 […] Read more.
汇总低功耗物联网LPWAN连接技术,你只知道 SigFox和LoRa?
如果你的 IoT 项目打算使用 LPWAN,但是选择哪一种呢?当前市面上有多种 LPWAN 技术,本文将对这些技术做一个详细对比。 本文是 LPWAN(低功率广域网)的物联网连接技术系列文章的第二篇。第一篇文章是 LPWAN 的简单概述,包括了低功耗广域网的定义以及 LPWAN 技术相对于其他物联网连接技术的优势。本文我们将更加详细地介绍 多种LPWAN 在物联网领域的区别。 最终,你将了解到 LPWAN 是否适合你的 IoT 应用程序,如果是,又如何最好地推进你的项目。 市面上有多种 LPWAN 技术和标准,我们将重点关注 SigFox、LoRa、RPMA、Symphony Link 和 Weightless,因为这几项技术的开发和应用最为活跃。一些其他的专有协议栈,如 Dash7 联盟协议,本文将不会涉及到,因为其关注度不高。 接下来我们将分别概述这几种 LPWAN 技术。在本系列文章的剩余部分中,我们针对每一种技术,深入探索其优缺点,剖析协议栈技术细节。 SigFox SigFox 成立于2009年,是一家总部位于法国 Labège 的法国公司。SigFox 在欧洲的推广非常成功,可以说是 LPWAN 领域中最具吸引力的(或者至少是最具知名度的)。它还拥有一个伟大的供应商生态系统,包括德州仪器、Silicon Labs 和 Axom。 SigFox使用专有技术,使用较低的调制速率来实现更长的传输范围。基于这样的设计,SigFox 对于只需要发送少量、不常见的突发数据的应用场景来说是一个很好的选择。 SifFox 典型的应用包括停车传感器、水表或智能垃圾桶。当然,它也有一些缺点。将数据发回传感器、设备(下行能力)受到严重限制,信号干扰可能成为问题。 LoRa LoRa 联盟是一个开放的非营利组织,旨在促进和推广 LPWAN 技术的生态系统。它在北美、欧洲、非洲和亚洲拥有约400家会员公司,其创始成员包括 IBM、MicroChip、思科、Semtech、Bouygues 电信、Singtel、KPN、Swisscom、Fastnet 和 Belgacom。 […] Read more.
物联网常见通信协议梳理(下)
1  概述 在上一篇文章《物联网常见通信协议与通讯协议梳理【上】-通讯协议》中,对物联网常用通信协议和通讯协议作了区分,并对通讯协议进行了分享;本文将对常用的通信协议进行剖析,重点面向市场上使用率较高的,且又不是诸如TCP/IP之类老生常谈的。   2  近距离通信协议 2.1  RFID RFID的空中接口通信协议规范基本决定了RFID的工作类型,RFID读写器和相应类型RFID标签之间的通讯规则,包括:频率、调制、位编码及命令集。ISO/IEC制定五种频段的空中接口协议。 (1)ISO/IEC 18000-1《信息技术-基于单品管理的射频识别-第1部分:参考结构和标准化的参数定义》。它规范空中接口通信协议中共同遵守的读写器与标签的通信参数表、知识产权基本规则等内容。这样每一个频段对应的标准不需要对相同内容进行重复规定。 (2)ISO/IEC 18000-2《信息技术-基于单品管理的射频识别-第2部分:135KHz以下的空中接口通信用参数》。它规定在标签和读写器之间通信的物理接口,读写器应具有与Type A(FDX)和Type B(HDX)标签通信的能力;规定协议和指令再加上多标签通信的防碰撞方法。 (3)ISO/IEC 18000-3《信息技术-基于单品管理的射频识别-第3部分:参数空中接口通信在13.56MHz》。它规定读写器与标签之间的物理接口、协议和命令再加上防碰撞方法。关于防碰撞协议可以分为两种模式,而模式1又分为基本型与两种扩展型协议(无时隙无终止多应答器协议和时隙终止自适应轮询多应答器读取协议)。模式2采用时频复用FTDMA协议,共有8个信道,适用于标签数量较多的情形。 (4)ISO/IEC 18000-4《信息技术-基于单品管理的射频识别-第4部分:2.45 GHz空中接口通信用参数》。它规定读写器与标签之间的物理接口、协议和命令再加上防碰撞方法。该标准包括两种模式,模式1是无源标签工作方式是读写器先讲;模式2是有源标签,工作方式是标签先讲。 (5)ISO/IEC 18000-6《信息技术-基于单品管理的射频识别-第6部分:860 MHz – 960 MHz空中接口通信参数》。它规定读写器与标签之间的物理接口、协议和命令再加上防碰撞方法。它包含TypeA、TypeB和TypeC三种无源标签的接口协议,通信距离最远可以达到10m。其中TypeC是由EPCglobal起草的,并于2006年7月获得批准,它在识别速度、读写速度、数据容量、防碰撞、信息安全、频段适应能力、抗干扰等方面有较大提高。2006年递交V4.0草案,它针对带辅助电源和传感器电子标签的特点进行扩展,包括标签数据存储方式和交互命令。带电池的主动式标签可以提供较大范围的读取能力和更强的通信可靠性,不过其尺寸较大,价格也更贵一些。 (6)ISO/IEC 18000-7《信息技术-基于单品管理的射频识别-第7部分:433 MHz有源空中接口通信参数》。它规定读写器与标签之间的物理接口、协议和命令再加上防碰撞方法。有源标签识读范围大,适用于大型固定资产的跟踪。属于有源电子标签。 此外,还有3个常用的RFID协议: (1)ISO/IEC 14443《识别卡—无触点集成电路卡—邻近卡》 国际标准ISO 14443定义了两种信号接口:TypeA和TypeB。ISO 14443A和B互不兼容。 一、ISO 14443 TypeA ISO 14443 TypeA (也称ISO 14443A)一般用于门禁卡、公交卡和小额储值消费卡等,具有较高的市场占有率。 举例: 1)MIFARE ULtralight(MFO ICU1X):国内常称U10。此芯片没有加密功能,只能系统加密,内存是64个字节,典型应用:广深高速火车票。(另:MIFARE ULtralight C,也叫U20,此芯片可以加密,内存是192个字节)。这两个芯片的内码位数都是一样的,不过内码数据时不同的。(国内兼容芯片有FM11RF005内存64个字节、BL75R12内存64个字节等) 2)MIFARE Std 1k(MF1 IC S50):国内常称MF1 S50。主要应用在一卡通方面。内存1KB,有16个扇区,每个扇区有4个块,每个块16个字节。初始密码是12个F。(国内兼容芯片有FM11R08、ISSI4439、TKS50、BL75R06等) 3)MIFARE Std 4k(MF1 IC S70):国内常称为MF1 S70。主要应用在一卡通方面。内存4KB,共40个扇区,前面32个扇区跟S50一样,每个扇区有4个块,后面8个扇区是16个块,每个块都是16个字节。初始密码是12个F。(国内兼容芯片有ISSI4469、FM11RF32以及华大的S70)。 4)Mifare DESFire 4k(MF3 IC D41/D40):国内常称为MF3。典型应用:南京地铁。 5)SHC1102:上海华虹生产。典型应用:上海一卡通。 二、ISO 14443 TypeB ISO14443B由于加密系数比较高,更适合于CPU卡,一般用于身份证、护照、银联卡等,目前的第二代电子身份证采用的标准是ISO 14443 TypeB协议。 举例: 1)SR176:瑞士意法半导体(ST)生产。 2)SRIX4K:瑞士意法半导体(ST)生产。 3)THR1064:北京同方生产。典型应用:奥运门票。 4)AT88RF020:美国爱特梅尔(ATMIL)生产。典型应用:广州地铁卡。 5)第二代居民身份证:上海华虹、北京同方THR9904、天津大塘和北京华大生产。 (2)ISO/IEC 15693《识别卡—无接触点集成电路卡—近距卡》 ISO 14443A/B的读写距离通常在10cm以内,应用较广。但ISO 15693的读写距离可以达到1m,应用较灵活,与ISO 18000-3兼容(我国的国家标准很多与ISO 18000大部分兼容)。 举例: 1)ICODE SLI(SL2ICS20):国内常称ICODE 2(内存是1Kbit),此型号常用。国内兼容有BL75R05、FM1302N。(另:ICODE SLI-S内存是2048bit,ICODE SLI-L内存是512bit,这两款芯片在国内不常用。) 2)Tag-it HF-1 Plus:国内常称Tl2048,美国德州仪器公司(简称TI公司)生产。 3)EM4135:瑞士EM生产。 4)BL75R04:上海贝岭生产以及FM1302T(复旦生产),兼容TI公司的Tag-it HF-1 Plus。 (3)ISO 18092《信息技术系统间近距离无线通信及信息交换的接口和协议》 NFC协议,对近距离无线通信技术进行了一些规范。NFC属于RFID范畴,但又与RFID有一些区别,因此本文将单独一小节对NFC进行阐述。   […] Read more.