LoRaWAN 规范 1.0.2 (章节5)

5 MAC Command网络管理时会在网络服务器和终端MAC层之间传输一系列MAC命令。MAC层命令对应用、应用服务器以及终端设备上的应用永不可见。一帧数据中可以包含任何MAC命令序列,MAC命令既可以放在FOpts中和正常数据一起发送;也可以放在FRMPayload中单独发送,此时FPort = 0,但不能同时在两个字段携带MAC命令。放在FOpts中的MAC命令不加密,并且不能超过15个字...了解详情

LoRaWAN 规范 1.0.2 (2~4章)

2 LoRaWAN 简介LoRaTM 是由Semtech开发的一种远距离、低功耗、低速率的无线射频技术。本文档中,将具有比A类更多功能的设备统一称为 “高类终端设备”。原文Devices implementing more than Class A are generally named “higher Class end-devices” in this document.2.1 LoRaWAN Classes终端双向通信(A类)A类的终端设备每次发送数据后会打开两个持续时间很短的接收窗口来接收下行数据,终端设备通过这种方式实现双向通信。传输时间间隔等于终端设备基础的时间间隔加上一个随机时间(ALOHA类型协议)。对终端设备来说,A类是功耗最低的系统,只有在发送数据后的一小段时间内接收处理服务器发送来的数据。服务器在其它所有时间上的下行数据必须等待节点下一次发送数据才可以下发。通过随机时间对间隔进行微调来实现随机访问,让所发送者平等、自由地竞争信道的使用权。低功耗,先发送后接收,发送和接收交替进行。终端只有在发送数据后才能接收处理服务器发送来的数据,发送数据不受接收数据的影响。收发比=1:1具有接收时隙的终端双向通信(B类)B类终端设备允许更多的接收窗口。在A类接收窗口的基础上B类设备还会在特定的时刻打开更多的接收窗口。而为了保证终端设备能够在特定的时间打开接收窗口,它会从网关接收信标来完成时间同步。这样服务器也就可以获知终端设备的所有接收窗口的时刻。同样是先发送后接收,不同的是每次发送后按照一定时间间隔启动接收窗口,接收多条数据。时间间隔从网关获取,以便服务器知晓终端接收消息的时刻。收发比=1:N最大接收时隙的终端双向通信(C类)C类终端设备的接收窗口,除了在发送数据的时候关闭外一直处于打开状态。C类终端功耗比A类和B类都大,但对于和服务器之间的交互来说延迟也最低。打开接收窗口的时间间隔很小,几乎不间断的接收消息。比A和B更耗能,但和服务器交互的延迟低。 2.2 规范高级类的附加功能向下兼容低级类。所有LoRaWAN终端必须实现A类的功能。注意:本规范手册中:物理消息格式、MAC消息格式以及A类和其它高级类都具备的东西,只在本手册的A类部分介绍。3 物理层消息格式LoRa中用来区分上行和下行消息。3.1 上行链路消息上行链路消息由终端发送经过一个或多个网关中转后到达服务器1。它使用的LoRa无线分组显性模式由物理头(PHDR)和它的CRC(PHDR_CRC)校验组成。由CRC保证荷载数据的一致性(发送和接收的数据完全一致,不仅仅是数据完整)。Uplink PHY:3.2 下行链路消息下行链路消息由服务器发送给终端设备,每条消息对应的终端设备是唯一确定的,而且只通过一个网关2转发。下行链路消息由物理头(PHDR)和这个头的CRC(PHDR_CRC)组成3。下行链路消息:3.3 接收窗口设备终端每次发送数据完成后打开两个收窗口。以数据发送结束作为基准进行计算接收窗口的开启时间。发送 | | RX1 | RX2|<---------------------->|<--------------------------->| || 无线发送耗时 | RECEIVE_DELAY1 | || |<------------------------------------------------------->|RECEIVE_DELAY3.3.1 第一个接收窗口的 开启、使用的信道和数据速率第一个接收窗口(RX1)使用的频率、数据速率与上行传输时使用的频率、数据速率存在映射关系。RX1在发送完成后第RECEIVE_DELAY1秒(+/- 20 毫秒)开启。并且收发数据使用的数据速率和地域有关,详情资料在文档《LoRaWAN 区域相关参数手册》(LoRaWAN Regional Parameters document)。默认情况下第一个接收窗口数据速率和最后一次发送数据时使用的速率相同。3.3.2 第二个接收窗口的 开启、使用的信道和数据速率第二个接收窗口RX2使用经过修正的可配置的 经过配置的固定的 频率和数据速率。RX2在发送完成后第RECEIVE_DELAY2秒(+/- 20 毫秒)开启。频率和数据速率可以通过MAC命令修改(见第5章)。默认的频率和数据速率与地域相关,详情资料在文档《LoRaWAN 区域相关参数手册》(LoRaWAN Regional Parameters document)。3.3.3 接收窗口持续时间接收窗口的最短时间必需满足:终端设备的无线收发器能够处理完下行数据的前导码。3.3.4 接收期间接收者的活动无线电接收器在某个接收窗口检测到相应的前导码后会继续接收,直到下行数据帧全部解调完毕。如果在第一个接收窗口检测并完成解调,同时通过检查地址(服务器分配的地址)和MIC,确认该帧属于本节点,终端设备不再打开第二个接收窗口。3.3.5 服务器给终端设备发送消息服务器必需要十分精确的在这两个接收窗口的时间点上发送数据终端设备才能收到。3.3.6 接收窗口相关的重要事项上一次发送结束后,在没有收到数据或者第二个没有关闭前,不能再次发送。3.3.7 其它协议数据的收发节点可以通过LoRaWAN收发窗口监听或传输其它协议,或者做任何传输。收发其它协议或者在LoRaWAN收发窗口之间传输任何数据。 不过,终端设备仍然要遵守当地法律法规并且遵循LoRaWAN规范。4 MAC 消息格式LoRa所有的上下行链路消息都会包含PHY负载(Payload),该负载以单字节MAC头(MHDR)为开始,MAC头后面是MAC负载(MACPayload)4,结尾是4字节的消息一致码(MIC)。4.1 MAC 层 (PHYPayload)
大小(字节1.....
了解详情

广州市电子信息学校物联网通信应用专业介绍

通信技术 —— 物联网通信应用方向什么是物联网?以智能家居为例,家里的灯光、冰箱、空调等家用电器;烟雾、燃气等安全防护设施;红外、视频等各种监控设备……这些看似毫不相关的设备,可以全部连接联系到一起,这就是“物物相联”。根据自身需要设定各种应用场景,例如,回家时只需按下一个按钮,就可以自动打开廊灯、客厅吊灯、打开窗帘、解除安防报警、打开电视机并调到自己喜欢的频道、打开热水器、打开空调并设定温度为2...了解详情

怎样把LoRa终端功耗降到极致

一. 引言能耗对于电池供电的产品来说是一个重大的问题,一旦电能耗尽设备将“罢工”,在某些场合电能意味着电子产品的生命。物联网时代将会有越来越多电池供电的设备通过无线通信连接,降低能耗再次摆在工程师的桌面上—解决它。锐米LoRa终端(简称终端)RNDU470Thttp://www.rimelink.com/pd.jsp?id=2)不但具备空旷环境传输5km的超长距离优势,还将休眠能耗降低到极致(0.4uA,带RTC为1.4uA)。我们是怎么做到的呢?接下来,一步一步解密。二. 硬件设计1.选用低功耗器件终端MCU选用STM8L151C8T6,它属于超低功耗,不带RTC休眠为400nA,带RTC下休眠为1.4uA。该MCU拥有较大的RAM(4KB)和自带EEPROM(2KB),不用扩展外部存储设备,进行一步降低功耗和成本。终端射频芯片选用SX1278,在休眠模式下,该芯片功耗低至忽略不计。2.尽可能快地让射频模块休眠SX1278属于LoRa TM扩频调制技术,它的远距离优势得益于调制增益,不是靠增大发射功率(那将消耗更多电能)。该射频芯片的电流消耗如下:休眠<0.2uA,空闲=1.6mA,接收=12mA,发射(最大功率)=120mA.终端MCU通过“中断+定时器超时”方式控制SX1278,一旦射频完成发送或接收,立即进入休眠模式。3.了解MCU的工作模式与功耗降低MCU的功耗首先尽可能少地开启外设,其次尽可能地让其休眠。我们一起看看STM8L151C8T6不同工作模式下功耗。更多信息请链接http://blog.csdn.net/jiangjunjie_2005/article/details/47700597
模式等待低功耗运行低功耗等待主动停止停止
入口WFWF软件代码软件代码+WFHALHAL
晶振LSI或LSLSI或LSLSI或LS...
了解详情

巧用LoRa无线网络 远距离采集温湿度

一. 采集系统意义温湿度是自然界中和人类打交道最多的两个物理参数,无论是在生产实验场所,还是在居住休闲场所,温湿度的采集或控制都十分频繁和重要,比如机房,变电站,粮仓,冷库,图书馆,博物馆,药厂等都需要监测环境的温湿度,而且,网络化远程采集温湿度并报警是现代科技发展的一个必然趋势。如果您购买锐米公司的LoRa终端和LoRa网关,可以快速搭建一个采集温湿度的物联网系统,该系统如下图所示,可以将温湿度采集到云服务器,通过智能手机查看。快速搭建锐米物联网系统请链接:http://www.rimelink.com/nd.jsp?id=36&_np=105_315如上图红色虚线框所示,为快速设计Demo系统硬件采用了RNDU470T和温湿度传感器SHT71,开发语言为ASNI C,开发环境为IAR for STM8(免费下载链接:http://www.rimelink.com/nd.jsp?id=33&_np=105_315),为降低复杂度没有使用操作系统。二. 硬件连接采集系统硬件基于RNDU470T(锐米LoRa终端www.rimelink.com)设计,它的引脚定义如下:
引脚号引脚名称引脚类型描述
VCSuppl3.3V电源
GNSuppl电源地
RXD IN/OUUART接收
TXD IN/OUUART发送
CONDIN/OUUART输出信号端口
CONDIN/OUUART输入信号端口
COND IN/OU保留
RSD IN/OU复位引脚
固定引脚
固定引脚
SM
了解详情

云服务器如何连接LoRa网关

【数据采集节点采集的数据,会通过USB串口转换线转接至网关软件,数据内容包括UserId与实际数据:其中UserId用于标识节点,可认为是个两个字节的整形数,而实际数据则与具体采集来源相关,因此,采用字节数组的方式。【传输格式网关中的传输设置,是为了把采集到的数据传输到云端或其它业务数据中心,以便进行远程展示或应用。为了传输的便捷,对于接收的实际数据,会转换成16进制字符串并且16进制形式的每...了解详情

巧用LoRa无线网络 实现工厂节能减排

据统计测算,2011年我国工业领域电机总用电量为2.6万亿kWh,占工业用电的75%。系统调节方式落后,大部分风机、泵类采用机械节流方式调节,效率比调速方式约低30%。如果全国整体提升电机系统效率5-8%,年可实现节电1300-2300亿度,相当于2-3个三峡电站的发电量,因此进行电机能效提升和电机系统的节能改造,是进行可持续发展和产业升级的一条必由之路。现在物联网技术助力工厂节能减排。如下图所示...了解详情

锐米LoRa网关连接云服务器

【数据采集节点采集的数据,会通过USB串口转换线转接至网关软件,数据内容包括UserId与实际数据:其中UserId用于标识节点,可认为是个两个字节的整形数,而实际数据则与具体采集来源相关,因此,采用字节数组的方式。【传输格式网关中的传输设置,是为了把采集到的数据传输到云端或其它业务数据中心,以便进行远程展示或应用。为了传输的便捷,对于接收的实际数据,会转换成16进制字符串并且16进制形式的每...了解详情

LoRa频率与带宽测试

一、测试目的跳频是抵抗外部干扰和多径衰退的好方法,它将频率分成一个个单独的物理信道。LoRa无线通信也不例外,需要按频率划分信道。LoRa的中心频率和通信带宽都是可以动态设置的,本实验旨在测试带宽与信道划分的关系。二、测试方法如上图所示,用2片iWL881A(长沙市锐米通信科技有限公司,www.rimelink.com)通过USB转串口连接到PC机上。模块都支持shell命令,可以设置BW(带宽)和Freq(频率)。RX模块接收到数据后,通过UART打印到PC屏幕上。三、测试数据
带宽(kHz中心(kHz最小(kHz最大(kHz信道(kHz信道/带宽
50470,00469,90470,42521.0
471,00470,90471,42
25...
了解详情

LoRa无线通信设计(三)小区环境测试

引言我们在《LoRa无线通信设计(一)原理》中解释了LoRa扩频通信带来更长的通信距离的原理http://blog.csdn.net/jiangjunjie_2005/article/details/47857259。在微功率无线通信中典型的应用场景是3种:空空距离通信:如连接湖、河、平原、山丘等自然区域的机械设备和传感器;住宅区域通信:如连接小区、工厂、商场的灯光和烟雾报警器等;跨楼层通信:如连接家庭水、燃气、电、热等表计;在小区环境通信中,无线电信号会受到高层建筑物的阻碍,无法做到直线传播。当绕射的信号到达接收器时比较微弱,需要接收灵敏度高的机制才能保证通信。LoRa通信距离远,抗干扰能力强,那么它在一个住宅小区里的通信性能如何呢?我们一起看看小区测试情况。一.测试小区我们挑选了一个成熟的小区,该小区有5334户,高层建筑(18层和32层)有64栋,容积率3.95(密度较大)。该小区的实景图如下:二.测试方法我们使用iWL881A无线通信模块进行测试,该产品由长沙市锐米通信科技有限公司研制,www.rimelink.com,属于LoRa长距离低功耗产品,实物图片如下。有想了解该产品低功耗特性的朋友,请参考博文:http://blog.csdn.net/jiangjunjie_2005/article/details/47700597iWL881A共支持10个档位,每个档位的速率如下表:
档位1
速率(bps61324448816028750810162033
长度13612252525
在不同的通信速率下测试数据帧的长度不同,通信数据为随机数据,外加2字节的CRC16校验。以第10档为例,随机数据长度为252字节,外加2字节校验,即...了解详情

LoRa无线通信设计(二)空空距离测试

引言我们在《LoRa无线通信设计(一)原理》中解释了LoRa扩频通信带来更长的通信距离的原理http://blog.csdn.net/jiangjunjie_2005/article/details/47857259。在微功率无线通信中典型的应用场景是3种:空空距离通信:如连接湖、河、平原、山丘等自然区域的机械设备和传感器;住宅区域通信:如连接小区、工厂、商场的灯光和烟雾报警器;跨楼层通信:如连接家庭水、燃气、电、热等表计;Semtech公司号称LoRa的最大空空通信距离可达15千米,当然这是在最低速率(BW=7.8kHz, FEC=4/8,SF=4096 chips/symbol, 约1.43bps)和最佳环境(天气良好,环境适宜)下取得的成绩。毕竟1.43bps的速率除极为特殊的场合(如:像“探索者2号”之类的太空通信或军事应用)外,作用不大。今天,我们挑选一个尚能应用大部分场合的低速率(BW=62.5kHz, FEC=4/5, SF=1024 chips/symbol, 约204bps),在湘江边空旷地区进行空空距离测试。Let’s Go!一.测试地区概貌我们先用百度地图看看本次LoRa空空距离测试区域的概貌,如下图所示,将发射模块放置在起点位置,测试人员沿“长沙绕城高速”前行,分别在江西岸(1.7公里)、江中(2.4公里)、江东岸(3.2公里)和芙蓉北路(4.6公里)进行通信测试。起点与这4个测试点之间空旷,没有建筑物,是一个难得的测试场景。二.测试方法我们使用iWL881A无线通信模块(长沙市锐米通信科技有限公司,www.rimelink.com,LoRa长距离低功耗产品),设置在第4档位,使用弹簧天线。考虑通信速率比较低(约204bps),通信数据为16字节随机数据,外加2字节的CRC16校验,即通信帧总长为18字节。发射器每发送一帧数据后进入等待状态,如果接收到接收器的回应(即18字节)后,再发送下一帧数据,通过统计发送帧数目和接收帧数据,可以计算出通信成功率。接收器每接收到通信帧,闪烁LED1,表明接收到数据包;然后对16字节的数据校验CRC16,如果正确则回应18字节的数据帧,闪烁LED2灯。我们把发射器放置在湘江边高层建筑的25楼,如下图所示,拿接收器沿高速公路前行,通过观看LED灯的闪烁可以得知通信成功与否。三.测试结果在湘江西岸(1.7公里):接收器成功接收到数据帧,根据LED1和LED2同时闪烁可知,接收成功率高。湘江中(2.4公里):通信正常,LED1和LED2闪烁接近,接收成功率高。江东岸(3.2公里):有一些丢包,LED1的闪烁次数与LED2明显要多。此时,发射模块的大厦已经隐隐约约了。芙蓉北路(4.6公里):此处已经无法看到发射节点的大厦了,令人惊讶的是,接收器的LED1和LED2灯仍然闪烁,比例约为2:1,即接收成功率为50%。4.8公里处失联:继续向东,过芙蓉北路约200米,仔细测试超过5分钟,LED1和LED2没有任何闪烁,可以断定此处通信失败。看图片可知,有桥梁、树木等阻碍,足以中断微弱的信号(无线信号衰减与距离的平方成正比)。四.测试总结首先,还是证明了LoRa无线超长的通信距离,虽然我们只测试了4.6公里,这对于物联网建设已经是一个很大的应用场景。想象下,我们隔一条江就可以用无线控制对面的一个机械设备(如水泵的开关或放水闸门开关),这是一个多么节省成本和人力的方案。要知道这个微功率无线产品价格低廉,且使用的是免费无线频带,再加上它的低功耗可以方便安装在电池供电的掌机上。相反,GPRS技术硬件价格比LoRa模块高,需要到中国移动(或联通)购买一张SIM卡,每个月需要支持流量费用。另外GPRS能耗高,如果安装在便于携带的掌机上,需要价格不菲的大容量锂电池,还要经常充电。其次,不得不佩服欧美人的科研精神和信念。扩频技术理论已经有70多年了,因为调制解调技术的复杂性,一直没有应用在微功率IC上。现在,Semtech公司于2013年成功研制LoRa芯片。除去人家多年科研积累和人才,更有一种坚持不懈的精神和科技为人类服务的信念。这些,正是我们这个浮燥和功利民族学习的地方,中国人聪明,同时需要增长科学智慧。往返徒步10公里,经过3个小时的测试时间,已经到了下午1点了,饥饿侵袭,看着下图修铁路工人就餐,感受到了简单的幸福。随后,上一张湘江美景。70多年前游弋在此的是日寇的汽艇,再过5天,我们将迎来抗战胜利70周年大阅兵。无论战争还是和平年代,努力提高自身水平,提高民族竞争力,提升国力,永远都是真理。了解详情

LoRa无线通信设计(一)原理

引言1901年,古列尔默.马可尼把长波无线电信号从Cornwall(康沃尔,位于英国的西南部)跨过大西洋传送到3200公里之外的Newfoundland(加拿大的纽芬兰岛),至此人类进入了无线通信时代。100多年来,无线技术的发展为人类带来了无线电、电视、移动电话和通信卫星。近20年,最让人们深刻感受的是移动通信,手机几乎成为人们的一个器官,用它便捷接入Internet。无线通信具有一些天生优势:...了解详情